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1. INTRODUCTION

I+ has been widely recognized that modelling exrors can lead
to sensitivity problems and even divergence of Kalman-Bucy filter.
In cases where the nominal plant parameters used in the filter design
are different from the actual plant parameters, the uncompensated
mismatched steady state Kalman~Bucy filter exhibits bias errors. Athans
discussed this problem, and presented a brief survey of the various
schemes to reduce filter sensitivity. In particular Ref. [1]

introduced the continuous time compensated Kalman filter, a sub-

optimal state estimator which can be used to eliminate steady state
bias errors when it is used in conjunction with the mismatched
steady state (asymptotic)time-iﬁvariant Kalman-Bucy filter. The ap-
proach used relies on the utilization of the residual (innovations)
process of the mismatched filter to estimate, via a Kalman-Bucy
filter, the state estimation errors and subsequent improvements of
the state estimate. The compensated Kalman filter augments the mis-
matched steady state Kalman-Bucy filter by the introduction of ad-
ditional dynamics and feedforward integral compensation channels.
Satisfactory results Of this compensated Kalman filter in a practical
design have been reported by Michael and Farrar [2], where it was
applied to the estimation and control of critical gas turbine engine
variables.

This note follows the same philosophy and development as [13,

for the discrete time case. In section 2, we give definitions and
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and assumptions as weli as the definition of the nominal mismatched steady
state Kalman-Bucy filter. Section 3 analyzes the errors due to mismatching.
Section 4 contains the main contribution which deals with the development
of the compensated filter structure and equations. Section 5 contains the
discussion of the results.

The elimination of bias errors is accomplished by having accumulators
(the analog of integrators) acting upon the residuals. Thus if persistent
bias errors exist due to model mismatching, the accumulators provide the
necessary corrections so that the bias errors are removed from the estimates
in steady state.

The approach selected was dictated by issues of simplicity of design,
namely the use of constant gains in the eétimator realization, and the avoid-
ance of real time parameter estimation, which requires extensive real time
calculations. All calculations of the constant filter gains can be carried

out off-line.



2. _DEFINITIONS AND ASSUMPTIONS

Only modelling errors in plant parameters will be considered
throughout this paper. We believe that this is often the case in

practice. When there are errors in the statistical parameters of the
underlying random processes, a different approach is required and the

results are more complicated.

2.1 Actual Plant Description

We assume that the actual plant is an n-th order linear time-
invariant, stochastic dynamical system with state vector x(t)e Rn,
. r

constant input vector u € R™ and noisy measurement vector z(t)€ R

described by

(State Equation) x(t+l) = A x(t) + B u + E(¢t) (1)

~~

{Measurement Equation) z(t) =

0

x(t) + 8(t) (2)

where A, B, C are respectively nxn, nxm, rxn constant matrices.
The plant noise _E_:_',_(t) and the measurement noise B (t) are white
Gaussian stationary processes with the following statistics, which

are assumed to be known to the designer.

E(E(t))= 0 for all t (3)
Eff(sE () }= 25 _ for all s,t (4)
E(B(t))=0 for all t (5
e{e(s)8' ()} =08 _, for all s,t (6)



where Sst denotes the Kronecker delta, and Z, the plant noise
intensity matrix, is a constant nxn positive semi-definite symmetric
matrix, while Q, the measurement noise intensity matrix is a

constant rxr positive definite symmetric matrix. Moreover, £(t)

and gjs) are assumed to be uncorrelated for all s, t, i.e.

E{€(£)8'(s)} =0 (7)

It is further assumed that (with to -+ - x)

E{x(t)} =0 (8)

2.2 Model Description

The actual plant dynamics are defined by the values of the

three constant matrices A, B, C in equations (1) and (2), and
the noise statistics defined in equations (3)-(8). We shall assume
that the actual values of A, B and C are not known exactly to the
designer. Rather, nominal values A , B , C are available to the

=" —n’" -
designer in addition to perfect knowledge of the noise statistics, and
the value of the constant input vector u. Thus as far as the designer

is concerned, the model is given by

x(t+1) x(t) +B u + £(%) (9)

A
-

2(t) = x(t) + 8(8) (10)



For later development, define the following parameter error

matrices:
AA 2A-A (11)
_— - =-n
A
AB =B - B (12)
o= =" =
A
A&C =c-¢c, (13)

2.3 Further Assumptions

We limit the discussions to constant gain filters, as in [1],
since they represent one of the most practical uses of Kalman-
Bucy filters from the application viewpoint, and they can readily
lead into steady state error and stability analysis. The following

assumptions are necessary for the derivation of the results.

1. [A,B] and [A ,B 1 are controllable pairs.
- -n’'=n
2. [A,C] and [én,gn] are observable pairs.

=1/2 =1/

3. [AZ2 ] and [én, 2] are controllable pairs.

4. Both A and én are strictly stable matrices, i.e
all of their eigenvalues lie within the unit

circle. This also implies that (érgp-l and (én- L)-l exist.

These assumptions are indeed necessary for the rigorous development

of a unique, stable, steady state Kalman-Bucy filter.



2.4 Definition of the Nominal Mismatched Steady-State Kalman

Bucy Filter (NMSSKBF)

Let us suppose that the designer constructs the NMSSKBF on the
basis of the nominal parameter values available to him and the as-
sumed known statistical parameters. Then the state estimate of x(t),

~
En(t)a R?, generated by such a filter, is given by the following

mismatched filter dynamics.

R (t+1|t) = A & (£) +Bu (14a}
£ 2% 28
& (£+1) =% (t+llt) + G r (t+1), =x (£.) =0 (14b)
- - -n-—n - o —_—
r (£)= z() - CX (t|t-1) (151
I z =Fn

where En 1s a constant nxr filter gain matrix given by

-1
1]
e I ch (16)

G I c'(© +
-n -—mn-—n-—
and En is the nxn constant, symmetric, positive definite solution

of the algebraic matrix Riccati equation [3]

ALA'"-ALC'(CZC'+ @)—lc ZA' + 5= (17)
-n—n—m In—fl-n —n1nm - —rmrnm -

z
Zn
The block diagram of the NMSSKBF is shown in Figure 1.

The existence of En and En are guaranteed by our assumptions.

Also it is well known that the closed-loop filter matrix

[A -AGC]l=[A -AZC'O+CcZc ) ¢c] (18)
-n —n—-n-n -n “Tann — - -n

is a strictly stable matrix.
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3. ERRORS DUE TO MISMATCHING

If the NMSSKBF of Figure 1 is used without further compensation,
severe inaccuracies arise due to the fact that the nominal plant
matrices A , B , C are used rather than the actual (but unknown)

-n’ =n' =n
matrices A, B, C. These effects are particularly bothersome because
bias errors in the estimates exist. It is instructive to isolate
these errors, because the structure of the equation suggests that

compensation techniques can be used.

3.1 Estimation Errors and their Dynamics

Define the state estimation error gn(t) induced by the

NMSSKBF by

e

(€) = x(8) - x_(t]e-1) (19)

:;Kl

From eéquations (1), (2), (14), (15), and (19), one can readily
deduce that the state estimate error gn(t) satisfies the stochastic

difference equation

X (t+l) = A x(t) + Bu + E(t) - (A %X (t) + B u) (20)
—n - = -= = -n—n -n—

Rearranging, one obtains



A - Cc1X
—n —n"=-n

]
~~

x (t+1) (€) + E(t)-a G O(t) + AA x(t)-A G AC x(t)

E :I!D'
= o

(21)

3.2 Mean State Estimation Error

Equation (21) readily allowsone to deduce the effects of model
mismatching upon the estimation errors; bias effects are introduced.
To compute these, one simply takes expected values in equation (21).
We remark that the expectations are not conditional ones, since the

filter structure has been fixed. Thus

B{X (t+1)} = [A -2 cc IE(X (0)} + An Efx(t)}

(22)
-2 G Ac E{x(©)} +AB u
But from equation (1),
E{x (t+1)} = 2 E{x(1)} +B n (23)

This yields, in view of equation (8), a non-zero mean state, i,e.,
t
E{x(t)} = Z z_x_t'ng;é 0 (24)
T=t, -

Thus, if some or all of Aa, AB, and AC are non-zero, then one can
readily conclude from (22) that bias errors exist. Note that the
effect of the constant input u accentuates these errors, even for

stable system. From equations (22) and (24),
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t-t
e _ _ 0 (o~
E{x ()} = [A-AGC] E{E (£}

(25)
s

t
+ s};c [z_\n-éngn_n] “S{1aa-ac Ac I ZtA "1 +AB}u
0 ()

Noting that, in view of egquations (8) and (14),
E{gn(to)} = E{E(to)} - §ﬁ§n(to)} =0 (26)

equation (25) becomes

t S
E{X ()} = s§=t A-aGC 17 7{14a-a G Ac] [Tg A "B]+ABlu
0 0 (27)

This is in general non-vanishing, and cannot be evaluated since A, B, C,
A_A,_AE, g:_ are not known exactly. In particular, as t gets large, the

mean steady state estimation errors are approached,

lim E{x(t)} = -[A-I) T B u (29)
troo
Lim E{E (00} = @ -Acc - I {{AA-aG ACI (a-11 B-AB}u  (29)

£

Both of these are non-zero., Therefore, in the mismatched case, there
exists a non~zero mean steady-state estimation error. Again, due to
incomplete information, one cannot compute this mean steady-state

estimate error so as to add it to the NMSSKBF estimate gn(t) to arrive
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at unbiased estimates.

3.3 Discussion

The above development indicates that the NMSSKBF should not be
used without further modification. It necessitates the use of com-
pensation by a suboptimal estimator, because the truly optimal filter
(that estimates the unknown elements of A, B and C) is an infinite
dimensional one [3]. The degree of suboptimality has to be related
to the extra dynamics that are required to improve the performance
of the nominal mismatched Kalman-Bucy filter.

The next section presents a compensation technique, which is
similar to [l]. The central idea is that it augments the NMSSKBF
by additional filter dynamics and tries to extract further informa-
tion from the residual (innovation) processes. It has the merits
that all gains can be pre-computed, and it avoids the complexity of
non~linear estimation (or the extended Kalman filter algorithm) which
is not always guaranteed to work properly {3]. Moreover, it compen-
sates the biased mean steady state estimate error without sacrificing
the accuracy of the state estimate, i.e. increase of RMS errors, which is
very often the case when other techniques are used, e.g., increased

artifical plant noise covariance matrix [4].



-12~

4. THE DEVELOPMENT OF THE DYNAMIC FILTER COMPENSATOR

First recall the dynamic equations of the state
estimation error gn(t), and the residual process En(t) {(equations

(21), (15)).

% (t+1) = [A-A G C ]x () + &(t)-A G O(t) + AA x(t)-A G AC x(t)
- “n-n-n ' -n = B e ¢ - -n—o— —
+4Bu (30)

r (6 =z(8) - C En(tlt—l) (31)

Using equations (1), (2) and (19), equation (31) can be written as

r, (&) =c % (g) + Ac x(t) + 6(%) (32)

Note that the residual process En(t) is linear in the state estimation
error gn(t). It is reasonable to attempt using equation (32) as a
"measurement equation" to obtain an estimate of gn(t), the state
estimation error. However, the existence of the unknown matrices, Aa,

AB and ég in equations (30) and (32) prohibits us from solving this as

a linear estimation problem. Thus certain approximations have to he made,
In what follows, it is shown how one can form such a linear estima-
tion problem, by making approximations with reasonable physical inter-

pretation.
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4.1 Philo SOP_IEZ

. . n
Define the time sequences w(t)e R™ and v(t)e R" as

follows:
A
w(t) = AR x(t) + AB u (33)
vit) = AC x(t) (34)

Thus equations (30) and (32) reduce to

x (e+1) = [A-A G C 1x () +3(t)—§n§ny_(t) +§(t)-—§n§n_6_(t)(35)
r (£) =C x (8) +y(t) + 8(x) (38)

Now it is apparent that equations (35) and (36) form a linear esti-

mation problem, with correlated plant and measurement noise, provided

that w(t) and v(t) satisfy linear equations. So the next step is to
develop simple linear equations for w(t) and v(t). If one is pri-
marily interested in the development of a steady-state constant gain
filter, one can proceed as follows.

From equations (28) and (33), we can deduce that

lim E{w(t)} = [AB + %(I-gx_)'l

0

lu = unknown constant (37)

Also

w(t+l) = w(t) = AA[(A-D)x(t) + B u] + ARE(t) (38)
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Equation (37) implies that w(t) must have a nonzero (but unknown)
mean steady state, while equation (38) indicates that it must contain
a zero mean driving noise term. Both of these objectives can be

satisfied if one selects the dynamics of w(t) to be of the form
w(t+l) = w(t) = y(8); wlt) #0 (39)

where Y(t) is a zero mean, white, Gaussian stationary process, i.e.

Ely(e)} = 0 (40)
E{y(t)y'(m}t =TS __ (41)

Similarly, for v(t), from equations (28) and (34), one can see that

lim E{v(t)} = - é§}§7§3~l§_g_ = unknown constant (43)
-

and
v(t+l) = v(t) =ACE(A-Dx(t) + B ul + AC §(t) (44)

This leads wa to select the dynamics of v(t) by the eguation
T(t+l) - v(t) = AlR); w(t) #0 (45)

where A(t) is a white, Gaussian, stationary noise process with

statistics
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e{d(t)} =0 (46)
EQADAN (T} = A8 (47)
A=A 20

We remark that if é_A_ is known (or can be estimated on the basis

of physical considérations) one should select

Y(t) = An E(¢%) (48)

and set

T=faE (49)

Similarly, if AC is known (or can be estimated) one should select

Alt) = Ac () (50)
and set
A=Ac E AC' (51)

In view of equations (48) and (5Q), or physical reasoning,
one should consider Y(t) and A{t) as two correlated processes,

i.e.

E{y(e)A' ()} = &35 (52)

Indeed if both AA and AC are known or can be estimated, one should set

Q. =4a

2 AC! (53)

jin
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Also E(t) should be correlated with y(t), and A(t). Let

Elg(ay (n} = 2.8, . (54)
E{€()A (1} = QeySer (55)
In particular
f, =5 A"
y "L (56)
if AA is known (or can be estimated), and
i, = £ Ac! (57)

if _A_C_ is known (or can be estimated).
The above development allows one, by making certain ap~
proximations, to replace equations (30) and (32) by a linear estimation

problem with plant dynamics given by

0] [arae8 1 28 M5 M [1 0 0 2g] &
w(t+l) | = 4] I O || w(t) |[#]0 I 0 O x.(t) (58)
v(e+) ° o zdlywd Lo oz o Jfrw
$(t+1) F $(t) D L 9(8)

P ()

and measurement equation given by
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_:En(t)
En(t) = [S-n g 11 + B(t) (59)
w(t) -
o ¥
H vit)

Thus a Kalman~Bucy filter can be designed to generate estimates of

~
-~

..’En(t) , w(t), and v(t), denoted respectively by gn(t) ’ :v;_(t) , and

n
v(t), based on past measurements of En('r) P g ST LB

Recalling that (see equation (19))

x(t) = (t]e-1) + x_(¢) (60)

X
-n
it is clear that an improved predicted estimate gtt[t-l) , and updated

estimate ?c_(t) of x(t) can be constructed by

~

Rtle-1) = gn(t[t-—l) + £ eft-D) (8la)
R(e) = & (£|e-1) + ch_nc:)_ (61h)

4.2 Details of Constructing the Compensated Filter

Using a steady state Kalman-Bucy filter, the estimates §1’1 (t),
_Q_(t) and i;_(t) are generated via the following equations
én(t+1[t) = [z_xn—gngngnJgn(t) + @) - A G 9(t) —'z_\.n_Gn@_(QH_I_SP_L‘l"l
[Enct) - gnz_ccn(t[t—l)—‘_'?_(t-l)] (62a)
én(t+1) = :_:in(t+llt) + gx[gn(tﬂ) - gnén(t+1|t) - ()1 (62b)
G(erD) = @(8) + L [x (41 - C X (e+1[6) - S(0)] (63)
F(t+1) = $(t) + Ev[_gn(t.+l) - _c_ng_::n(tult) - ¥(t)] (64)



-18-

where Ex' Ew' Ev are respectlve;y nxr, nxr and rxr constant

matrices (steady state filter gains), which will be defined below.

The initial conditions that one might use are

x (£) =0 (65)
—n Q
~N
wity) =0 (66)
~
v(to) =0 (67)
They are chosen because ore can view Aa, AB, AC as random
matrices with zero means, the nominal values A , B , C used by
-n" —n" -
the designer represent the a priori mean values of A, B and C,
respectively.
Now referring back to equations (58) and (59), define for
notational convenience the matrices
e Q Q 0 7
Al =<y =€r» =
M= (68)
Q) T 3 0
=Y = A =
Q! !
2 2 22
L 8 8 o 8.
A o]
N= (69)
Q
9
LG)
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Then M plays the role of the composite plant white noise (th))
intensity matrix, and N yields the correlation between the composite
plant white noise ¥(t) and the measurement white noise 0(t).

Let S denote the steady state pre&icted error covariance matrix
associated with the estimation problem defined by equations (58) and
(59). Then S is a symmetric at least semi-positive definite matrix.
In addition, it is the positive semi-definite matrix solution to the

algebraic Riccati equation (take e.g. the dual in [5].

- 5 0 Iy ip (70)

One can then compute the filter gain matrices Ex’ Ew and Ev that appear in

(62)-(64) by

=S H' @B+HSH" (71)

Je 4 g

4,3 Simplification

The realization of Section 4.2 can be considerably simplified.

Define the compensated residual process Eﬁt) by
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A ~ N
x(t) = z(t) - gng(t{t—l) - ¥ (e-1) (72)
From ecquation (61) we deduce that
<
r(t) = z(t) - C £ (£|t-1) - C_ X (t[t-1) - $(£-1) (73)
- - -n-n -n—n -~
Then from equation (15), this becomes

r(t) =x (£) - % (t]e-1) ~ §(x-11 (74)

Equations (6l), (62), (14) and (74) yield

R(e+1]t) (e+1|t) + gn(t+1{t) (75)

A
X
-

AR (t]t-1) +Bu+2a Grxr (t)
-n— -n-Inmnm

-1nn
+ (A -A G C)X (t) + (L) - A G T(t)
- —TnmTnmn -™m - -n—n—

~AGOMO +HSH) Tr(t)
-1 - -

1

A R(£) + B u + W(t)
-n— -n— -

[(AG -AGCL -AGL) -2aGO0(0 + gsu) " Nre)
“nn  “nnnTxX STV n—n— - == =

From equation (71), it is easy to see that

CL +I =HSH' (@+HSH) T
N v —_—— = ===
After a little algebra, it can be shown that the last term in eguation (75)

vanishes for all t. That is, equation (75) reduces to
(e+l]t) = A R(t) + B u + Hi(t) (76a)
£ 2a LA A

Thus the compensated state estimate X(t+l) is given by

(t+1) (76b)

Axu

R(t+1) (e+1]e) +

A
X
-T

]

JN>

(e+1]t) + % (t+1]e) + L_x(e+l)
- —%—

R(e+1]t) + L x(t+1) (76e)
= 2=
In addition, equations (63) and (64) become

F(t+l) = QA(t) + L r(t+l) (77)
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T(e+l) = (&) + L r(t+l) (78)
v ¥ L, =

Figure 2 shows the realization of equations (76) to (78). From
this representation, one can deduce simpler computational procedures for
the evaluation of the compensated Kalman filter gain matrices L , L , L .

=" ' =
To be specific, we can reduce the computations of the augmented matrices
F, D, H, M, N (equations (58), (59), (68), (69)) and the matrix solution

S in the algebraic Riccati equation (70), and the subsequent evaluation

of the matrices Ex’ Ew’ and Ev by equation (71). After some algebraic
manifulations with equations (58), (59), (68)-(71) and (17), one obtains

the following:

a L
-1 I
& oz
(79)
[ Q ]
-1 - £y €Y A
DIM-N @ "N']D' = =4

Q r @
£y = YA
LINL
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Figure 2; Discrete Time Compensated Kalman Filter
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and equations (70), (71) become

- -1

s=Rls-sE@+asaN  ESE vy (80)
L
L
L, =sHE@+mnsa)t (a1)
L
—v

4.4 Discussion

The structure of the discrete-time compensated Kalman filter,
illustrated in Figure 2, has certain appealing physical aspects. The
major structural difference between the uncompensated Kalman filter
of Figure 1 and of the compensated one of Figure 2, hinges upon the
addition of distinct accumulator loops driven, through appropriate
gains, by the compensated residual vector r(t+l). Note that an
accumulator is the discrete time analog of an integrator in the continuous
time case. In the absence of any accumulators, the residual vector of the
the uncompensated Kalman filter would exhibit bias errors. In the com—
pensated filter these residual bias errors are accumulated (integratedl
with appropriate weightings (the gain matrices Ev and Ew in Figure 2)
in two different ways. The accumulator that generates the segquence
ﬁ(t) corrects for bias errors in the predict cycle, to compensate for
the errors modelled by the matrices AA and AB. This makes sense, because
w(t) was defined by Eq. (33) in terms of AA and AB. The accumulator

that generates the segquence ﬁﬁt) corrects for bias errors in the
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residuals due to modelling errors ép in the measurement equation;
if AC = 0, the accumulator channel that generates gﬁt) would be absent.

One can then think of #(t) as being a crude estimate of constant
but unknown disturbances that are additive to the state eguations, and
of jjt) as a crude estimate of constant but unknown bias errors in the
measurement equation.

The improved estimate X(t+l) generated by the compensated Kalman
filter (Figure 2) is still instantanously influenced by the compensated
instantaneous residual r(t+l) through the feedforward gain Ex' The
nominal dynamics én’ En' gn are still being utilized and bias corrections
via Q}t) influence the predicted compensated estimate gﬁt+llt) and
hence the residual.

Obviously the transient performance of the estimation errors of the
compensated Kalman filter would hinge upon the numerical values of the
three gain matrices Ex' Ew' and Ev' These in time would not only de-
pend upon the nominal parameters, but upon the way the intensity matrices
of the white noise sequences Y(t) - see eq. (39) - and X(t) - see eq.
(45) - are selected. It is the authors' opinion that the suggested
guidelines for the covariance selection are reasonable, since for most
practical problems the designer has a reasonable idea of the worst
possible modelling errors, exhibited in éé, AB, and AC, from the nominal
parameters. It is important to stress that the white noise intensity

matrices I.and_é not only depend upon the modelling errors, but also

upon the intensity matrix Z of the original plant noise £(t), shown by
egs. {49) and (51). Furthermore, Y(t) and A(t) are correlated according

to egs. (52) to (57). Thus, the guesswork on the part of the designer is

minimized.
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5. FURTHER SIMPLIFICATIONS IN PRACTICAL DESIGNS

At first glance, the compensated Kalman filter might seem some-
what complicated than that of the NMSSKBF alone. We remark that the
complexity is directly related to the dimensionality of the two
auxiliary vectors v(t) and w(t). However, in most cases of practical
interest, canonical representations can be used to arrive at the
smallest number of additional accumulators in the realization of the

compensated Kalman filter.

5.1 A single Input Single Output Example

To illustrate these implications consider the design
of the compensated Kalman filter in the case of linear, time-
invariant, stable single input single output plants. Suppose
that the actual plant is characterized by its transfer functicn

c zn.-l +c zn—2+...+c z + c
n n-1 _ 2 1
G(z) = S

Z + a Zn-l'l' +a.z + a
n L AL 2 l

(82)

Then there are at most 2n unknowns (the ai's and ci's) in the plant
description.
Let ai; and cin' i=l,...,n,denote the nominal values of the ai

and ci r respectively. Then the standard controllable representation

for the actual plant (equation (82)) is
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f0 1 0 eeveee 07 "0
x(t+l) = | 0 © 1 0... 0 x(t) +] 0 u(t) + g(t)
0 0 0 1 0 (83)
1
.-a.l -a2 sesvveose -an- L o
W
B
A
= o e o0 + t
2(t) = [c; ©, c 1x(t) + 8(t) (84)
~———— s’
c
and the nominal values of A , B, C are (in the same representation)
-n" =-n -n
O l 0 oo oo e o
A =10 0 1l ceeeea O (85)
ql
_-aln -a2n oooc.o.-.-ann-
0
B =10 (86)
m
E!], [cln czn L I ) crm] (87)
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Thus
[ o
A = {((n-1) rows) (88)
5_3._'
Ac = ge! (90)
where
Sa' = [a,-a, r a,ma s -.up @ -2 ] (s1)
Sc' = [cl-cln' C=Cor vees cn-cnn] (92)

Examine the way the vector w(t) is defined (equation (33)).

Since AB = 0, w(t) is given by
9
w(t) = Aa x(t) = (93)
Sa'x(t)

which means that although w(t) is an nxl vector, it really contains

only one uncertain parameter, namely the scalar wn(t),

w (t) & sarx(t) (94)
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v(t) in this case is also a scalar

v(t) = 8c'x(t) (95)

Following then the procedures described in Section 4, one can see

that the scalars wn(t) and v(t) should be modelled as

wn(t+1) -w (£) = Yn(t) (96)

v(t+l) - v(t) = A(t) (97)
with

ey (v} =0 (98)

E{A(t)} =0 (99)
and

E{Yn(t)Yn(T)} =T 8. (100)

EABAMD]) = AS (101)

ey (0A(D} = Oynkﬁt,_ (102)

elE(t)y (0} = EZ‘E'YStT | (103)

E{E(e)A(T)} = (104)

QﬁkatT
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Ideally, one selects

rnn =6a'E Sa (105)
A= _6__';6_0_ (106)
— | By
Q’Y 3 8a'Z dc (107)
n
Q = Z Ja (108)
=€y
Sy = £ 8c (109)
In practice, since §_§_ and §c are not known one should use their
worst possible values in equations (105)-(109) to determine the
covariances,
Under these conditions, the equations of the compensated
Kalman filter become (see equations (76)-(78))
0
x =Ax L r(t+l) [ (110)
X(t+1) A x(t) + Bu+ L ( ) 0
w_(t)
n
@ +1) = w +
wn(t 1) wn(t) + Lwnr(t 1) (111)

T(e+l) = F(v) + L, T (t+1) (112)
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with
r(t) = z(t) - gngctlt-n - §(t~1) (113)
where
a) Ex is a constant nxl gain vector;
b) L. LIs a constant scalar gain;
Q) Lv is a constant scalar gain.

5.2 Extension to Multi-Input Multi-Output Systems

The above procedures can be easily extended to the multi-input
multi-output systems. We outline the step by step procedure that

should be followed.

Step 1: Examine the structure of the nxn matrix AA for arbitrary
variations of the actual and nominal plant parameters. Let p,
0<p<n, denote the number of non-zero rows of éﬂ. Define an nxp
matrix P according to the following rule. Let j=1,2,--., P index

the columns of P.

(a)e Let i=1, j=1

(b). If the i-th row of AA is nonzero, set the j-th column of P
equal to & (the natural basis vector in Rp), set j=j+1,
and go to (c). If the i-th row of AA is zexo, go to (c).

(¢). If i=n stop; otherwise set i=i+l and go to (b).
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Example: Suppose A_Z_\_ has the structure (where x denotes a nonzero

element)
FO c 0 O
An = 0 x 0 =x
Q 0 0 O
X X X OJ

- -
0 0
E=11 o0
0 0o
01

Step 2: Examine the structure of the rxn matrix AC for arbitrary
variations of the actual and nominal plant parameters. Let g,
0<g<r, denote the number of non-zero rows of AC. Define an rxqg
matrix Q according to the following rule. Let k=1,2,...,q9 index

the columns of Q.

{a). Let i=1l, k=1

(b). If the i=-th row of AC is non-zero, set the k-th
column of Q equal to e (the natural basic vector in
Rr), set k=k+1, and go to (C). If the i-th row of AC is

zero, go to (c).
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(eY. If i=r, stop; otherwise, set i=i+l and go to (b).

Exanple: Suppose that AC has the following structure

X x 0 0 x
é__:

0 a o 0 0

0 0 0 0 0

Then g=1 and the Q matrix is given by

Step 3: Let w (t) e K, Y, (t)e R®, such that

Ei(t+l) - Ei(t) = Il(t)
with

E[ll(t)] =0

ELY, (0Y](D] = I8

Make the identification

(114)

(115)

(116)
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wit) = B w, () (117)
Y; (8) = RIY(t) (118)
I, =peTp (119)
Step 4: Let v, (&) € r%, A(e) e R? such that
v(t+l) = v(t) = A, (¢) (120)
with
E(A,(0)] =0 (121)
ED (OA(T] = A8 (122)
Make the identification
viE) = Q v, (¢ (123)
= 124
A (8) = QIAE) (124)
4, =99 (125)

Step 5: Assume that §(t), Il(t) and 2\_1(1:) are pairwise correlated.

E[EM®IYI(T)] =8, 8 (126)
R —EYl tT

EE(E)A, (T)] = §4 O (127)
27 —E;Al tT

EfY, (A, (D=8, § (128)

—*{Al tT
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Make the identification

=Q. P
=y, —v— (129)
9'57‘1 =852 (130)
Q. =P'Q
T EEpR (131)

5.3 Reduced Dimension Compensated Kalman Filter: Summary
of Equations

The following equations are cobtained by substitution of

equations (114) through (131) into (76) to (78).

Filter Equations

R(e+l|t) = A R(£) + B u + P @ (t) (132a)
- -n— -n— —-1

R(e+1]t+1) = R(e+1]t) + L__r. (t+1) (132B)
- - —=1-1

W, (e+l) = @, (£) + L, 1 (t+l) (133a)
v, (£+l) = Zi(t) + Evl£1(t+11 (133b)
r  (e+l) = z(t+1) - gng(’.t+1|t) -9 % ® (134)

Filter Gain Equations

The filter gain matrices Exl(nxr), (pxxr}, and Evl(qxrl are given

Ewl

by

L 1]
-1 (135)
= ! + !
L 1 Y Hl(e HlY H1 )
l L
2
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where Y is the unique (symmetric) positive definite solution of the

(n+p+q)-th order algebraic matrix Riccati equation

1 '
HLYIF, + X

L=F )

Efi-¥

( + H,Y H!) ™

HYH (136)

Hl
-1

52, H,, M, are respectively (n+p+g)x(n+p+q), rx(n+p+q), (n+p+q)x

(n+p+d) constant matrices given by

A P 0
—-!1 — -—

E=t2 190 (137)
9 o1z

H o= [cog (138)
= Q

M =

=2 (139)

5.4 Discussion

The compensated Kalman filter' equations presented in Section 5.3
are the recommended ones for practical design. The additional
workload associated with the computation of the P and Q matrices is

justified in terms of the simplification that results in specific

problems.
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" From a technical viewpoint the essential difference between
the filters of Section 4.3 and 5.3 is that in the latter case the
compensated Kalman filter can be shown to possess all the regquisite
controllability and observability conditions which are necessary
for the existance of a unique positive definite solution to the al-
gebraic matrix Riccati equation and the guaranteed stability of
the resultant filter. It also pinpoints the additional number
(p+tq) of accumulators required to stabilize the uncompensated filter.

The -only "guesswork" required by the designer is the selection

of the intensity matrices gi(pxp) and Ai (gxgq) and the correlation

covariance matrices QEYl (nxp) , QEAl(nxq) and kal(pxq). All

of them scale with the intensity matrix E of the plant noise §(t).
This is evident from equations (49), (51), (53)-(55), (119), and

(125)-(128), from which we obtain

I, =p'8aEfap (140)
A, =Q'aAc E Act (141)
= £ A 4
ey, T2 A2E (142)
2‘9‘1 = E Ac'Q (143)
Y =P'An E AC'Q (144)
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Since g'is assumed known, and P and Q are readily evaluated, the

selection of Eilﬂl,gng ’ gﬁkl . and ngl only involves the use

of judicious estimates for AA and AC by the designer. As

remarked before, these estimates can be usually found from a worst
case analysis, i.e., the worst probable deviation of each parameter
from its assumed nominal value. Of course, there is still an ele=-
ment of judicious judgement to be made; at ieast in this desigﬁ the
"guesswork" can be related to the degree of worst deviation of the

nominal plant from the actual one.
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6. CONCLUSIONS

A method for compensating the mismatched constant gain discrete time
Kalman filter has been presented. The resultant compensated Kalman filter
is time invariant, and the gains are all computed off-line, with some
added complexity to the estimator. The compensation consists of the intro-
duction of feed-forward accumulating (integrating) channels between the
residual process and the uncompensated mismatched filter.

The compensated Kalman filter has the property that bias errors in
the state estimates are eliminated asymptotically., More complex algorithms

have to be used if unbiased estimates are required for all t.
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